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FINITE CRACK PROPAGATION IN A MICROPOLAR ELASTIC SOLID

Seog Young Han*, M.N.L. Narasimhan** and T.C. Kennedy***

(Recetved July 3, 1989)

The dynamic propagation of a finite crack under mode- | loading in a micropolar elastic solid is investigated. By using an
integral transform method, a pair of two-dimensional singular integral equations governing stress and couple stress is formulated
in terms of displacement transverse to the crack, macro and micro rotations, and microinertia. These equations are solved
numerically, and solutions for dynamic stress intensity and couple stress intensity factors are obtained by utilizing the values of
the strengths of the square root singularities in macrorotation and the gradient of microrotation at the crack tips. The motion of
the crack tips and the load on the crack surface are not prescribed in the formulation of the problem. Therefore, the method of
solution is applicable to nonuniform rates of propagation of a crack under an arbitrary time-dependent load on the crack surface.
As an example, the diffraction of a micropolar dilatational wave by a stationary crack is considered. The behavior of the
microrotation field and the dynamic couple stress intensity factor, influenced by microinertia, in addition to the dynamic stress
intensity factor, are examined. The classical elasticity solution for the corresponding problem arises as a special case when the
micropolar moduli are dropped from the present solution.
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1. INTRODUCTION

In dynamic crack propagation, a number of steady state
and transient problems have been investigated from the
viewpoint of classical elasticity theory. Yoffee(1951), Craggs
(1960), and Sih and Loeber(1969) have investigated steady
state problems. Transient problems were first considered by
Broberg(1960), with subsequent contributions by Baker(1962),
Freund(1972) and Thau and Lu(1971). Most of these studies
have dealt with semi-infinite crack problems which are trac-
table. However, in real situations, cracks are of finite length ;
and while the investigation of the dynamic interaction of the
two tips of a finite crack is very important, conventional
methods of analysis, such as the Wiener-Hopf technique,
cannot be easily applied to finite crack problems due to the
mathematical complexities of analysis. The problem of dif-
fraction of elastic waves by a finite crack has been discussed
by Eringen and Suhubi(1974). Kim(1977) investigated the
dynamic propagation of a finite crack in general terms for (1)
a stationary crack, (2) a crack propagating at constant speed,
and (3) a crack which suddenly stops after propagation at
constant speed. All of the above studies have dealt with
classical elastic media. However, to the best of our knowl-
edge, there have been no investigations of dynamic crack
propagation in micropolar elastic media.

The micropolar theory of elasticity, developed by Eringen
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and Suhubi(1964) and Eringen(1966), incorporates the prop-
erties of the microstructure of a material with in the contin-
uum framework. A micropolar continuum may be regarded
as a classical continuum, each point of which is assigned
another continuum with an additional rotational degree of
freedom besides translation. A consequence of this feature is
that the medium can support couple stress, spin and mi-
croinertia. The constitutive theory for micropolar media
consists of a stress constitutive equation involving microrota-
tion and a couple stress constitutive equation involving the
gradients of microrotation. The field equations are augment-
ed by a conservation law for microinertia.

The object of this study is to obtain the dynamic stress and
the dynamic couple stress intensity factors for a finite crack
whose tips may propagate nonuniformly in time under an
arbitrary time dependent normal load on the crack surface.
By using an integral transform method, a pair of two-
dimensional singular integral equations governing dynamic
stress and dynamic couple stress is formulated. The present
analysis demonstrates that both the macrorotation and the
gradient of the microrotation of the crack surface can be
determined by solving these singular inergral equations. In
addition, it is shown that both the dynamic stress and the
couple stress intensity factors can be obtained by utilizing the
values of the strengths of the square root singularities in
macrorotation and the gradient of the microrotation at the
crack tips. In this analysis, we have also investigated the
behavior of the microrotation field and the dynamic couple
stress intensity factor, influenced by microinertia, which have
no conterparts in the classical theory of elasticity. The classi-
cal elasticity solution for the dynamic finite crack propaga-
tion problem arises as a special case when the micropolar
moduli are dropped from the present solution.
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2. STATEMENT OF PROBLEM

A plane finite crack is contained in an unbounded medium as
shown in Fig.1. The body is micropolar, linearly elastic,
isotropic and homogeneous, and the body force and the body
couple are assumed to be negligible. A Cartesian coordinate
system which has been normalized by the half crack length is
introduced in such a way that the crack surface is initially
defined by —1<x<1, y=0., —00< z<oo. The time variable
used in this study has also been normalized by the time for the
micropolar dilatational wave to travel half of the crack
length. As a result of this normalization, the micropolar
dilatational wave speed is equal to unity. The propagation
distances of the right and left crack tips are denoted by 4. (¢),
and g_(t), respectively. Thus, the positions of the crack tips
at time, ¢, are given by x=+1+4.(¢), y=0.. The crack tip
velocities c.(¢) are such that ¢.(¢) =0 for <0 and 0< c+(¢)
< cg for t =0, where ¢y is the classical Rayleigh wave speed.
The field equations of micropolar linear elasticity are

( CDZ+ Csz) U, xx + ( CDZ_ CSZ) U, xy

+(Cs*+ CiP) U, ywt C32¢, y=U, 1t (1a)
(CDZ+ Csz) U, xx + ( sz_ Csz) U, xy
+(Csz+ Caz) v, »wt C32¢, x—=U, ¢t (lb)

and

Cs
C42(¢, xx+¢, yy) +_]T’(1/, x— U, y)

—%qus =@, tt (1c)

where y and y are the x-and y-components of the displace-
ment vector and ¢ is z-component of the microrotation
vector, and

et X
1 1+a+(t)

Fig. 1 Geometry of the problem

The quantities A, x, ¥ and y are the micropolar moduli, and
o and j are the mass density and the microinertia density,
respectively, of the medium, which are treated as constants.

The general solution of this problem is the superposition of
the solutions to the following : (1) the problem of the crack-
free region subjected to uniaxial tension, ¢(x, ), and (2) the
problem of the crack opened out by normal pressure, ¢(x, ¢),
with no loading at infinity. Since we are interested in the
dynamic stress and couple stress intensity factors, only prob-
lem (2) is considered since both of the stress intensity factors
may be derived from it. By symmetry, this problem is equiva-
lent to the problem of determination of stress distribution in
the half plane y=>(, when its boundary is subjected to the
following conditions :

jiflyy(z}(%c%,t)t)zo_o(x’ t)}-l—a,(t)<x<1+a+(t), gﬁ;

Z((’;% tt))::%} x>1+a.(t) or x< ~1—a(1), gg))
and

ba(x,0, =0 0<|x|<oo, (2¢)

where t,,, tyx, 0 and M,. represent, respectively, the normal
stress component, the shear stress component, the uniaxial
tension, and pertinent couple stress component, normalized
with respect to the shear modulus of the material. The initial
conditions are

u(x, y,0)=0,

v(x,y,0)=0,

é(x,»,00=0,

u, {x,y,0)=0,

v, {x,v,0)=0,

é, «(x,v,0)=0, 3)

for all x and y.
The components of stress, displacement and microrotation
must vanish as (x%2+y? —o0. Moreover, the symmetry with
respect to the y-axis provides the additional conditions,
v(x,0, )=v(—x,0, 1),

B(x,0,)=—¢(—x,0,0. 7 K=" @)

3. FORMULATION OF INTERGRAL
EQUATIONS

Since the problem is symmetric with respect to y =0, only
the upper half space is considered and y =0 is used rather
than y =0, for the y-coordinate of th crack surface. Integral
transforms are employed to reduce the partial differential
equations (1) to ordinary differential equations. First, the
time, ¢, is eliminated by application of the Laplace transform,

flx,y, p)=f0°°f(x, v, tye *dt, (5)

where the initial conditions are used. Second, Fourier
trigonometric transforms are used to suppress y. They are
defined by

Fx s, 0= [ 7(x, v, p) cos (sy)dy
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:j:wf(x, ¥, p) sin (sy)dy

(6)

The Fourier cosine transform is applied to the Laplace trans-
form of equation (1a) and a Fourier sine transform is applied,
respectively, to the Laplace transform of equations (1b) and
(1c). The resulting equations are

U, xx—(A’s*+ p?) i+ B%s 7, «+sC?¢

:(BZ+C2-A2)T7,X
AT, ox—(s*+p*) 0 —B%sit, «
_Czé,x:“sﬁ,
and
0°4, xx (02 2+2€ )5
”(su+v ) =—0%¢,
where

2 __ C32+C32 2_ CDZ— Csz 2 C32
A*= Cv B Cx ¢ Cn’
Cs® ._ C# r
€ =3 0*=<5=—",
Cs*’ Cs® n
Csz ']
C?.ECJL. CM:C02+C32.

(7a)

(7b)

(7¢)

(8)

Boundary condition (2e) has been used to obtain the right-
hand sides of equations (7a, b) in terms of #(x, 0, p) and 7,

(x,0,9).

The general solutions of equation (7) are given by

#(x, s, p)=Bi(s, p)e”*+Ba(s, p)e "~

(x, s, p)=
~£p,
7

_Tp
N

73
$

+Bs(s, p)e™* +Bu(s,p) e 7
+Bs(s, p)e”™*+ Bs(s, p)e ™"

+ Taj::zi(ﬂ, 0, p) cos hlys(n—x)]dn
+ 7% [ (1,0, ) cos hlys(n—0)dy
+ T,I:E(n, 0, p) cos hlr(n—x)]dn
+taj::¢-(77, 0, p) sin lra(n—=x)]ady

+tzj::q5(77. 0, p) sin klr(p—x)]dr  (9a)

(s, p)e""+;sl—Bz(s, pe

2
(s, p)e”"+];B4(s, pe T

Bs(s, P)enx‘}"%»‘Ba(S, pe s

+ Vs_[zﬁ(n, 0, ) sin hlys(n—x)]dn
+ Ve[ 92,0, p) sin klr(n—x)1dy
+ Vi 52,0, ) sin hlri(z—0)]dn
+ Vi [ §(2,0, ) cos lys(n—x))dn
+ Vi [ 82,0, ) cos hly(n—)]dn,

and

(9b)

where

1sC*

The coefficients B,(i=1,2, -+,

$(x, s, p)=F:Bs(s, p)e™™
+ F3By(s, ple ¥
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+ F3Bs(s, p)e™*+ F3Bs(s, p)(s, pye 7
+Ws [ 5(5,0, 9) cos hlyan—x))dn

+ W[ a(

7,0, p) cos hlr¥(n—x)ldy

+ le:: 7(7,0, p) cos hlr(n—x)]dy
+ Wa’/::i(ﬂ, 0, p) cos hlys(n—x)]dy
+ Wi [ (2,0, ) sin hlyaln—x)1d

ri=s*+p?
7,22:‘5.24_ 202A2(A2/C22+ﬁ282 02142)
€ 2A°-C") L

vy serar R

riP=s? 292A2(A /Cz +6*°B*—6*A%)
£ (2A*=C*) 2,

+ 7 2 A +R
R=[p*(A%/C*— 6% + €/7(2A*— CH P —4€6*C*p?/7,
T,= _’Z}A 2L2+s2)

S S S
=g g, iy

(R572+R5712+R3+— —Ty. ),
T:=L—T,— T,

e e 1
2= 7 vyt DA
_ 68 1 1

t3 - 73 732__ 722 62142 )
V= nn-nr+ S|
1 s 1 1 1 71 »

Vi:'}'iTi/S (i:2,3),

Vi=rT/s (i=2,3),

Wf::"{VrZT
(i=1,2,3),

W’ = —{r:"t:=(A*

(i=2,3),
Ry=0*A*L*,
L*=B*+C*— A7,
Ry=0°s*(B*~ L*~ AL

AZ
__p2r 2 2 AL S
pL] ot cx]
Ri= 0254 (L~ BY) + 5°p° [02L2+

2 2
+Lar+S-or- e+ 2

2
i—( 2142 -

—(A%s2+p?) Ti— 7:B*s Vi}1sC*

c?),

L? Bz]
C 2
LZDZ

Fi=(—B%*s*— A*r2+n?/sC? (z =2,3).

following conditions :

w(x, s, p)=0
v(x, s, p)zo} at x = +oo,
#(x, s, p)=0

We get

(9¢0)

24+ p?)t;—yBis VY

(10)

6) are determined from the

(11)
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Bl(S, p):_%

Bsy(s, p) :‘“*2'[:77(77, 0, p)e ""dn,

+£'/::¢_(?7, 0, p)e " dn,

" 51,0, p)e7man,

Bs(s,z))-~% (5,0, p)e ™" dy,
+%IQ¢(0, 0, p)e ™ dy,
B:(s, p)=Bu(s, p) =Be(s, p) =0. (12)

The stress components in the transform space, Fxer by Eses
M- and M,. can then be obtained by transforming the stress-
displacement equations and substituting for %, 7 and ¢ from
equations (9). However, only #,, and M, are considered since
the main object of this study is the determination of the
dynamic stress and couple stress intensity factors. The trans-
formed, normalized stress component £,, is given by

Ewlx, s, D)Zz}z—z[— 7(x, 0, p)+sv(x, s, p)]

2 —

+é‘—zzzz . (13)

Substituting # and 7 from equations (9a, b) into the equation
(13) and integrating by parts, we obtain
tol(x, s, p)=

—%—‘(Lz*sz/rlz)f:i, 7,0, p)e """ Fdy
+%(L2~sz/712)j::z7, 7,0, p)e™ " dy
~ T2 [T5,40,0, e 0y

+ ?Z"‘(Lz—l)j::ﬁ, 7,0, p) e’ dy
—%(Lz—l)f: 7, (7,0, p)e ™" ¥dy
+L212-1) [ 7,000,0, pyerr Ty
+~t22i(Lz— 1)]:5(77, 0, p)e """ dp
—%(LZ—D[:&(”, 0, p)e™* " Xdy

+82212-1) [" 42,0, pre ™y

_-@.&(Lz_l)I:q;‘ ”(7), 0' p)e—ra(ﬂ—x)d”

—p—zzv(x,O, D). (14)

The inverse Fourier cosine transform for any point in the
space is then taken and y is allowed to approach zero. Since
£»(x, v, p) is continuous in y at y =0, we can interchange the
order of the limit process and integration in s. The inverse
Fourier cosine transform which is defined by

Flx, v, p)=%[’fa(x, s, p) cos (sy)ds (15)

is performed on equation (14) for y=0. The inverse Laplace
transform is then taken to obtain the expression for f,,. In
view of the lengthy expressions for (s, p), 1=1, 2, 3, we find
it reasonable to use an approximation scheme for the inver-
sion of the Laplace transform that would be unaffected by the

singularities present in the integal formulation of ¢,,, as will
be seen later. We find it necessary to consider the case of
large p, which corresponds to small ¢, based on the Tauberian
theorems. The inverse Laplace transform is then taken by
application of the Cagniard-Dehoop method and a convolu-
tion integral, that is, the expression for f£,,(x, 0, p) obtained
above is changed into a recognizable Laplace transform by
setting 7|7 —x|=pt (i =1, 2, 3) in each double integral. Then,
using the identity

[a—“’;f ~g(t)]=pf§, (16)
where * denotes the convolution integral, we obtain

ty,v(x, 0, t):

a_i[[:fo'y, (2,0, DH(t—1—|p—x)
M(t—r1, n—x)drdv]

+[:]:v, 7(n,0, )H(t—7—|p—x|/A)
Mt—17, n—x)drdy

+[:_/;tv, 7(,0, t)H(t—r—|n—x|/6C2)
Mi(t—1t, n—x)drdy

+[:fot¢(n,0, D) H(t—7—|p—xl/A)
M(t—17, n—x)drdy

+[ [ 6.0, )t~z —In—xl/6C)

Ms(t—1, n—x)drdy a7
where
1‘41(~‘§5 {):
2 é_i i_ (Lz_l)z _‘géi 2__ g2]-1/2
—2-{a- L>§ T Sl
Z 2_ CZI;’Z
e, )= A (e
A%e 2+C2/BZ 1
7 (A¥CP -6 &°
{5(52‘—@’2/1‘12)3’2 _LRE(er-tAn
12 8A*
b EH(E2-82/AN
tga, g )
_ (L*-1)?® A% 2+CYB* 1
Ms(E; ;) - 7{022 ] (Az/sz_ez) Ca
E(EZ_ ;2/926‘22)3/2
x[ 12
_ czs(sz_cz/echZ)llz
86°C,°
C‘ E+ 62 2/62 2)1/2
+86c) " i, J
e, =L G e eran,
Ms, oo Loy _pC e

x  A—0CF ¢
(&2— 22 A\ (18)

and H(¢) is the Heaviside function. Equation (17) is rear-
ranged in such a way that the terms with the Cauchy kernel
(p—x)"" are extracted out and the terms with the kernel (7
—x)"%in M:=1,2, ---,5) are combined so that the strong
singularities across »=x are cancelled. Noting that the p,
7,0, 7) is equal to the macrorotation of the crack surface,
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(7,0, 7), that following equation is obtained :

_20-L) 9

tyy(x, 0, f) 7[sz b‘t*](x, t), (19)

where

Jix, )=

—LI*L[;—)—[L Azw(rz 0, 1) ((;—;); drdy

+0—(1-L3/41 [ w(z,0, r)( L ydedy
(14AIZ f_[ (7,0, r)( ) 9dn

1 1-L* A’¢ 2+C*B?

Y122 T (ACE-6) f./;Ha

()
{cu(v 0, 7) CETE }a’z’dn

1 1-L? A’ 2+C'B?
_7_2 7 (AYC? 0’)ff
w(7,0,7) (t—1)
{ A? (v—x)}drd”

1 1-L* A’ 2+C*/B?

A arci—a M
w(n,0,7) (t—1)?

{ 02sz (7}_)5) }dl’dﬂ

+fj;lw(71,0, K (t—r1,n—x)
X[(t=17)2—(n—x)*]"*dzdy
+f£2w(:n, 0, D)Kot —17, p—x)drdy

+f_/;3w(v7;,0, O K(t—1, 9—x)

“mj—[—zyfx @70, dn

2(5122299 o L, 2.0, r) T))adrdn
YA A= 670 ezCZ)ff $(n,0, r)( +y dedn
+g 3;(%:02 CZ)fftzs 7,0, r)(ﬂ_ ydrdy
+ [[#.0, VK t— 1, 1) dedy

+ [[ #(,0, VKt~ 7, 7~ x) dzan, (20)

where

¢ 1
Ki(¢ 0= €[1+(1_ ENTE T 91— L2)

_(1=L?y 3+ &2/ £ ]
8 1+(14+0.58%/65(1-¢2/&n) 2 b
72
K(¢, O =— (14AI; ) glf{l'f'qlm}—z
L1 1-L* A’e 2+CYB’ £
12 2 7 (AYCA-6% A
{1.5+qs'*’}"‘~o.25{1.5+ql”2}“{1+a1”"}“’]
L1 1-L A’e 24G/B* ¢
g 2 7 (A*/C2—8% A°

Lzy -1 E+ (£33 A2
(1+¢:*?)"'+In o ]

L1 1-L* A% 2+CYB* ¢
X6 0=y "5 7 @/c-om 7
x[(15+422) 1 =0.25(1.5+ "%} 1 {1

+qzl/2}—2]

1 1-L* A% 2+C2/B" ¢
8§ 2z (AG-0) 6C%
[0+ qey +ln$+'_€_’ 2O

&/6C,
KA, O =y Fellra ),
Ks(f, C):434 q(g_gz ox)) “;52{1‘*'112”2}42

.

2
A ={(n, Do<c<t~|gp—x,
—1—a(r)<p<l+a.(r)},
A={(n, D0<r<t—|p—=xl/A,
—1—-a-(r)<p<l+a.(r)},
As={(n, DO0<r<t—|p—xl/8C,,

—1—a(r)<p<l+adlr)} (21)

_Likewise, the transformed, normalized couple stress,
Ms2(x, s, p) is given by

Myelx, s, p) = j6%[— 6 (x, 0, 0) + 5. (22)

Substituting for ¢ from equation (9¢) into equation (22), and
integrating by parts, we obtain

Mo(x, s, p)=—= ?/3 Lw 7(n,0,p) e " Ydy

+-2 ;% j:o 7(7,0, p)e™ " dy

2 o _
+?S7Zz—_/; é, 7(n,0, p)e™ " "dy

2 x
*2—57737[(”(5, 7(7,0, p)e™ " ¥dy. (23)

By following a method similar to that used for t,,(x, 0, ), we
obtain

_ 16

My(x,0, t)= " atj( 1) (24)
where

j f¢y’7770 T)( }dtdﬂ

+f_£§5,n(77,0, £ Kalt~ 7, 1) dedn

—(-1y e 2+ C?/BY

7
[ff v(#, 0, Z-)G"'_;))—g

—'2—076?'/];30 7,0, T)"(”__"}{)_dfdv

+ff“v(71, 0, ) Ki(t—r, 77~x)dra’71], (25)
and where
6 —_ ;__ 1/2]~1
K (E, &= 92C -252[1+(12 ]
Kz(éy g) 204 52 []+42”2] 2 (26)
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The p-integration in equations (20) and (25), which include
the Cauchy kernels, is performed in the sense of the Cauchy
principal value, if they do not exist in the sense of Riemann.
Recalling that #,,(x, 0, #) is given as a boundary condition on
the crack surface, equation (19) can be viewed as an integro-
differential equation for the unknown functions (7,0, r)
and ¢(7, 0, 7). Like wise, M,z(x, 0, ¢) is given as a boundary
condition on the crack surface and equation (24) can be
viewed as another integro-differenctial equation for the un-
known functions »(7, 0, r) and ¢, (7, 0, 7). Moreover, (7,
0, r) can be obtained from w(7,0, ) and ¢ (7, 0, r) from
$, +(n, 0, 7). However, the evaluation of w(7, 0, ) and ¢,,(7,
0, 7) can only be carried out numerically since the equations
are not analytically tractable. In order to facilitate the appli-
cation of numerical techniques, equations (19) and (24) are
changed into integral equation from by integration with
respect to time. Note that
2(1—-L%

fo Ct_yy(x, 0, r)dt:W](x, te), for |x|>1, (27

where ¢, is the time for the propagating crack tip to arrive at
x, such that x=14a4.(¢.) for x>1 and x=—~1—q_(¢t.) for x
< —1. Then, we obtain

L (1x, 0~ H(A -1 (, 10)]

:_/:ttyy(x,o, T)dr (28)
and

Uix, ) —H(x|-1J (x, t)}=0 (29)

In equations (28) and (29), it is assumed that
te=0, if |x|<1.

In order to evaluate w(7, 0, r) and ¢,,(», 0, r), present
in equations (28) and (29), it is expedient to cast them in a
form in which their singularities are explicit. In view of
previous analyses in the literature, two types of singularities
can be expected. The first type is the square root signularity
which arises at the crack tip, the proof of which can be found
in Achenbach and Bazant(1975) and Freund and Clifton(1974).
The second type is the traveling logarithmic sigularity locat-
ed at the front of the Rayleigh wave, confirmed by
Baker(1962) and Thau and Lu(1971), each of whom differ-
entiated the normal displacement of the crack surface with
respect to the coordinates of the crack propagation direction.
Despite the fact that w=1, , has a lograrithmic singularity as
x— * Cri(see the appendix in Kim, (1977), it turns out that the
final evaluation of the normal stress component ¢,, has only
a square root singularity according to the analysis of (Kim,
1977). In the present case, of micropolar medium, the analysis
for ¢,, is quite analogous to that for the macrorotation ¢. We
now express @ and ¢,, as

— L2(y, 7)
RO Rl TR 9 B L B po ) L
and
_ @(n, t
¢,,,(?], 0,z)= [1+a+(r)~r}]”2[1+ag(r)+n]”2’ (30b)

where £ and @ are assumed to be bounded and continuous
almost everywhere over the area, S, defined by S={(7, 7)|r
>0, —1—a-(7)|<n<1+a.(7)}. The functions Q and @ are
zero if (7, r) is not in S. Therefore, there is a jump disconti-
nuity in Q and @ across the crack tip trajectories. In order to
derive formulas for the stress and couple stress intensity
factors, it is further assumed that © and @ are analytic in the
region S almost everywhere along the crack tip trajectories.
Moreover, in the numerical integration process, Q and @ are
treated as if they are bounded and continuous everywhere in
Ny

4. STRESS AND COUPLE STRESS
INTENSITY FACTORS

The dynamic stress intensity factor K,,*(¢) is defined by

Kip* (1) :}gr51¢2n6 (1t a:(t)£6, 1), (31)

where the upper and lower signs are, respectively, for the
right and left crack tips. The evaluation of K;*(¢) is then
considered for the case of uniform extension of a crack. The
formula obtained for this case will be extended to nouniform
propagation of the crack without a detailed proof. For uni-
form extension, equation (30a) is written as

(7,0, 1) Z“[(—lj:%%é—z)”z]—uz (32)
The procedure for obtaining K;;*(¢#) has been described,
where ¢ has already been defined as the crack tip velocity.
This procedure is analogous to the one used by Kim(1977) for
the classical case, which we will not repeat here. However,
we point out that the procedure consists of choosing a partic-
ular point (x, #) in the »-7 plane such that x>1+¢¢ and
constructing the regions A4,, A., and A; by drawing the
characteristic lines. Then by introducing an appropriate
polar coordinate system and following the analysis of Musk-
helishvili[(1953), equation (29.3)], we evaluate Kj(¢) :

Kis(t)=f(A, Cs, ) Q0 +ct, t)//1+ct, (33)
where
FA, G, C) = —&lcﬁ?—”’fu—o.zsu—ﬁﬂ

(L*=1)*x"*  20—L3 Pn'| 1
2A%C;? (1-cD"c? [ 1+(Q—cA)™
1
2013
_a-=-ry» 3+ ¢? ]
8 [1+(1+05c)(1— )]

2__ 12 2
AL W+ T A (30)

+

for the right crack tip. In a similar manner, we obtain
Kio(t)=—f(A, Co, ) Q(—1—ct, t)//1+ct (35)

for the left crack tip.

Recalling that Kj(¢) was determined by considering the
neighborhood of the point, (1+c¢t, ¢), in the 5 — ¢ plane, the
applicability of equations (33) and (35) can be extended to the
case of uniform rates of propagation with some modification.
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The following equation is then obtained :

Kip(t)= if[A, C., Ct(t)]
Q+1+a:(s), ¢t]
[C+a () +a()/2}]7

X (36)

Similarly, the dynamic couple stress intensity factor K5(¢#)
is defined by

Kip=limv2r5 /b Mya(£1%a(D) %3, 1), (37
where the characteristic length 5 is given by

b= Yy
2(2p+x)

and the upper and lower signs are, respectively, for the right
and left crack tips.
For uniform extension, equation (30b) is written as

- 0o
¢, r1(77, O; Z') - [(1+CT)2"‘7}2]”2 . (38)
Then, according to the definition,
Kin(t)=g(6C,, c) O®(1+ct, t)//1Fct (39)

for the right crack tip and

£(0C,, ) =—j6*/bn
><[1—7}%[1+{1+{1~c2/6zczz}”2}]*1]-
(40)
In a similar manner, we obtain
Kn(t)=—g(8C;, ) @(—1—ct, )/ /T+ct (41)
for the left crack tip and
Kin(8) =1 g[0C:, c2(1)]

« O[t1tas(n), 1]
[+ a- () +a D))/ 2]

(42)

In orfer to obtain K /5(¢) and K (), Q[t1+a+(t)] and
O[+1+a.(¢t)] are first obtained by solving the simultaneous
integral equations, (28) and (29), numerically. Then Kj(¢) and
Ki(t) are computed by using equations (36) and (42).

5. EXAMPLE . PROBLEM

As a numerical example, the diffraction of a uniform
micropolar dilatational wave with a propagation vector
normal to the crack plane for the case of a stationary crack
is investigated. The total wave field for a diffraction problem
is determined by adding the incident wave field and the
scattered wave field. For the purpose of determining the
dynamic stress and couple stress intensity factors, only the
scattered wave field must be considered. The boundary condi-
tions (2a) and (2b) for the scattered wave field are given,
respectively, by

NNPY

Fig. 2 Division of the area of integration for numerical integra-
tion :
(D) |n*=Xnl=t—r,
(2) |n*—Xal=At—1),
(3) 19*— Xm|=0C(t~1)

j\i[yy(:(cz’cf)’(),t)t)zoaH(t) for |x[<1, (43)
where ¢ is the uniform pressure on the crack surface, and ¢
(H=a(t)=a-(1).

The numerical procedure for the computation of integral
equation (29) is analogous to that of Kim (1977) and is out-
lined as follows : Introduce a new variable, defined by 7* =7/
[1+a(z)], and as a consequence the regions A,, A, and A;
are as a consequence the regions A,%, A.* and A;*(see Fig.
2). Then, we divide A,*,A.*, and A;* into a set of horizontal
strips of equal spacing with interval 4z. As previously noted,
the logarithmic singularities are neglected and 2* and @*
are approximated in each strip by

2*(n*, r) :igal[dkj‘i‘bu(l'— )] Ti(n%),
(44a)
2M-1
O*(n*, )= j§3 [cestdei(z— 1)1 Ts5(n%),
(44b)

where

2% (n*, =2, 1),
TeS T The,

Q*(n*, 0)=D(n, 1),

and aa;, bus» Cr; and dy;, are constants and 7 is the ;7 ¢* order
Chebyshev polynomial of the first kind. Note that only odd
order polynomials are included in the terms related to ma-
crorotation, @, and microrotation, ¢, due to the antisymmetry
of both rotations with respect to the y-axis for the problem
under consideration, and that only even order polynomials
are included in the terms related to displacement, y, in the
y-direction and the gradient of microrotation, ¢,,. Both 7,=
0 and a.;= ¢1,=0, are taken from the initial conditions. Then,
from the continuity of 2* and @* at r=0and g,;=c,;=0, are
taken from the initial conditions. Then, from the continuity of



110 Seog Young Han, M.N.L. Narasimhan and T.C. Keunedy

Q* and @* at r=r1,, we have aw;=ay+bydr and cu=cy; +ff ¢ fu(T) Kot — 7, 7* —x) dzdn*
+d;dr, where [=k—1, and dr=r.— rr_:. The problem is Azk
now reduced to the determination of 4.; and 4,.; for each +ffx ¢ fraT) Ks(t—1, 77*—x)drd71’ (49)
strip. In order to compute 4,; and di;(r1 << r:s1=1¢), pick M
values of x, which are the zeros of Tou(x/(1+a(¢)]) in [0,1 Hiulxm, t) —ff Qi (7] ) drdn*
+a(4)], that is,
+f£:kaKs(t_T, 7*—x)drdn® (50)
_ Zm—1 &
xm—[1+a(t)]cos( o 2), (45) and
where m=1, 2, ---, M. Then, substituting equation (44a) into ) -
equation (28) and equation (44) into equation (29), the follow- Diurxm, £)=—(1—~L% 7Cs ,92(2+C /B?)
ing 2M X2M simultaneous linear system of equations is
obtained : [/f v f“‘(r)( *— ))3drd71
i 2M—1 v fzk(Z') dl'd7]
kz:!l jga[ﬂu jlk(xm, t) 26C2 ff )
i 2m—1 +_[/; v ftk(T)K7(l‘ T, 7 —x)dz‘dv'], (51)
+bkjE2k(xm.t)}+2 2 [ijGjlk(Xm. t) Aox .
k=1j=1,3 Q= Ty L
+di;Giznlxm, f)]‘w_iz— S1=7"%
2(1—-L% T,(7%)
“é_l[ xm . Q= 2 —===fn(z
R et bkj(t_rl)] j:l Qdn*=—1t s/‘
for |xnl<1 (46) f/_*z n* (G=2, 4, 2M), (52)
and o= P G=vs e ame,
i M flk(T):l, f2k(T):T_Z'k.
= ,:Z;‘[aijm(xm, t) +blszj2k(xm, t)]
TN The areas At:, A3., and A3, of the £** strip are, respective-
+ 2 2 [ewHiw(xm, 1)+ dusHiza(xm, £)]=0 ly, associated with A}, A%, and A3. The area intergtals Fy.,
for |xml<1, 47 G Djiw and H,, are computed approximately by the
application of quadrature formulas of the Gauss type, with
where m=1,2, -~ M, the exFeption of the n*—in_tegrals in the seconq and third
terms in Fj,, and G, the first and second terms in D, and
the first term in H,,x, which are computed analytically by the
Fitn(xm, t)f use of the recurrence formula, 7Tj..(x)=2xT;(x)— T-1(x).
_(= L f ./,1 i . Q f i ) drdn* The details of the integration procedure are described by

Han(1989).
+[1-( 1—L2)/4]ff Qfmdrdﬂ‘
)
U [ ey e 6. RESULTS AND DISCUSSION
1— L2 A%e 2+ C?* B?

+ ;
J (Az/ C =07 The dynamic stress and the couple stress intensity factors
f '/; » Q, 77 —x) 3dz'd77 given by equations (33) and (39) can be rewritten as follows :
_1-L* A’e _2+C*B’ JEC
8 j (AZ/CZZ—OZ) Kin() =54 oy /(A, G, 9271, 1), (53)
f Qf (t dl'd *
A Az (p*— ) Kﬁw(t)=7g(ﬂ92, ) @*(1, t). (54)

L1-LF A 2+CYB?
8 7 (A/C*— 6%

where equation (53) is obtained by dividing equation (33) by

2
_[ » 095 3 ((t*;_r))—d%dn* ov/ 7 and equation (54) is obtained by multiplying equation
* 2 M (39) by 76/76* and utilizing the boundary condition ¢,,(x, 0, 7)
+f’/;=;kaK2(f— T, 7*—x)drdy* =—g=—2(1—L?%/nC:*[see equation (27)].
+ ,/:/;;k QK1 7° ). 48) The micropolar coupling factor, N, is defined by
Gin(xm, t)= 2 __ K
B 02C22C2 f ( ) N - 2(/1+K) . (55)
2(/12 g2 Cz) A An¢ ﬁk(f)(” )3d2'd77
I A O O 62C22C2 ff The coefficients of the unknown functions, Q*(»*, ¢) and
4A* (A2 [0 ¢l s oy ( ‘ dtd” @*(n*, t), were computed by solving the simultaneous two-
f f 6 Ln( D)L dran® dimensional singular integral equations (46) and (47), from
4(/12 C?) wlti g ‘ x) 4ran which the normalized dynamic stress and couple stress inten-
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0.9

Time

Fig. 3 Normalized dynamic stress intensity factor of a station-
ary crack for various coupling factors
(¥=0.292)

0.40

0.05 |-

Time

Fig. 4 Normalized dynamic couple stress intensity factor of a
stationary crack for various coupling factors ( v=0.292)

sity factors were obtained by use of equations (53) and (54).
The numerical results for N =0, 0.2, 0.4, 0.6, 5=0.95 and j=
0.0196mr are shown in Figure 3, wihch is compared wth the
work of Baker (1962), and Fig. 4 Our result is found to be
within 5 percent of that of Baker. The numerical results for
5=0.2, 0.5, 0.95, N =0.2 and ;=0.0196mr are shown is Fig. 5
and 6.

It is seen from Fig. 3 and 4 that both the micropolar
dynamic stress and couple stress intensity factors increase as
the coupling factor increases. From Fig. 5 and 6, the mi-
cropolar dynamic couple stress intensity factor is found to
decrease as the characteristic length increases, although the
micropolar dynamic stress intensity factor remains practi-
cally the same. Therefore, the micropolar stress intensity
factor is always greater than the classical stress intensity
factor. The characteristic length does not significantly effect
the micropolar stress intensity factor, while it does affect the
couple stress intensity factor, as along as the characteristic
length for a finite crack is of the order of half of the crack
length.

Equation (19) for stress involves ¢ and ¢ and equation (24)
for couple stress involves both the displacement, transverse
to the crack surface, and the gradient of microrotation. The
classical solution for the corresponding problem has also

0.8

0.7
N=0.2
b=0.2 =05

06 | 5=0.95

0.8 1.0 1.2

Time

Fig. 5 Normalized dynamic stress intensity factor of a station-
ary crack for various characteristic lengths (v =0.292)
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N=0.2 b=0.2
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09

06 F /
b=0.5

03 | ’{ﬂﬂ’/"

0 ‘—% i A 1 1

0 0.2 0.4 0.8 0.8 1.0 1.2

Time

Fig. 6 Normalized dynamic couple stress intensity factor of a
stationary crack for various characteristic lengths(y =
0.292)

been obtained as a special case of our micropolar solution by
dropping the micropolar moduli in equation (46) and follow-
ing the same numerical procedure. The corresponding curve
is depicted in Figure 3 along with the exact solution of
Baker(1982) for the purpose of comparison. Our result is
found to be in good agreement with that of Baker.

However, the Laplace transform inversion procedure,
based on the present problem, restricted the analysis to the
normalized time range to about ¢ =1.2. Although the solution
for the times when the stress and couple stress intensity
factors reached their maximum values was not obtained,
useful information has been found to emerge from our solu-
tion concerning the behavior of the micropolar stress and
couple stress distributions in the dynamic crack propagation
process, the microrotation field and microinertia. Moreover,
it is reasonable to expect that the behavior of the stress
intensity factor for larger times would follow a similar
pattern as that of the classical case for corresponding times,
allowing for stress to reach maximum.
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